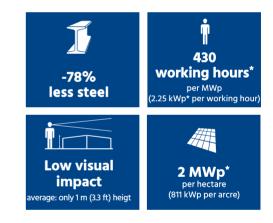
PEG[®] PV Substructure

A unique simplified high-density ground mount solution

Ground Anchor Solution

Key data


The PEG[®]'s **simple, high-density, and lightweight design**, streamlines the whole project's installation process leading to drastically reduced construction effort, materials, logistics, and labor sourcing.

The racking is low to the ground, about waist height, providing an aerodynamic design **suitable for extreme wind hurricanes.** This Datasheet provides information on the use of PEG EW anchor rod on sandy, soft or marshy soils.

Our PEG[®] racking **decreases material and installation costs** while providing a robust ground-mount solar solution that brings energy resiliency to the Caribbean region even during category 5 wind hurricanes.

Learn more about, why PEG is the best ground mount solution: <u>https://www.jurchen-technology.com/products/</u> solar-mounting/peg/peg-design/

Design

- Extremely light substructure, 78% less steel vs. conventional system
- Maximum MWh/acre land usage
- Patented, innovative, minimalist, simple design
- No DC trenching
- No concrete foundations
- Robust & certified for tropical weather, high winds (185+ mph, 298+ kmh) and high snow loads (50+ psf)
- Low visual impact, typically up to 3.3 ft (1 m) high

Procurement

- Significant CAPEX reduction of both supply and delivery
- 2.2 MW of substructure per 40 ft container

Installation

- Safe installation, working height 3.3 ft (1 m)
- No heavy machines, rods install with a hammer drill

- No DC cable trenching
- No concrete foundations
- Simpler H&S procedures
- Low-skilled labor
- 430 working hours* per MWp with 580 watt modules - applies to PEG EW standard

Operation

- Optimized energy generation, higher during the morning and afternoon
- Low ecological footprint Carbon footprint is 72 % (61 tons CO2/MWp) less versus a conventional fixed-tilt system.
- Proven design with over 500+ MWp in operation in all continents
- 811 kWp DC per acre (2.0 MWp* DC per hectare)
- Produces ~225% more yield per Hectare (or acre) versus trackers and fixed tilt systems

Patented 8° East-West, fixed-tilt, aerodynamic
~1.1 rods and ~2.2 clips per module
From 10s kWp to GW+ scale
Hot dip galvanized steel rods and plates
Designed for 298+ kmh (185+ mph) per ASCE Structural Code; compliance by local engineering. Values may vary dependingdepending on local structural code.
Flexible design allows high tolerances for seismic activity
 PEG specific clamping approval from module manufacturers Wind load certificate by German IFI Institute with local wind codes (ASCE). The PEG[®] substructure is UL 2703 certified. PE Stamped Drawings - Design loads according to local building codes: ASCE 7, NBC, Eurocode, AS1170, IS875, and SANS10160 Values may vary depending on the structural code.

For non-cohesive soil (e.g. sand or sand-gravel).

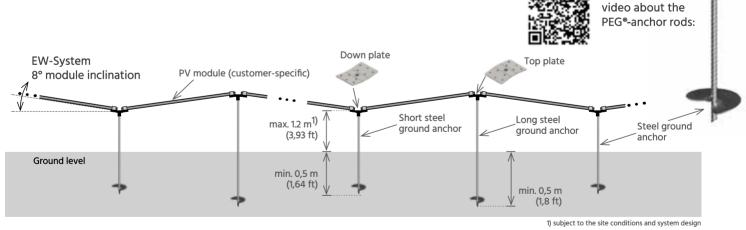
Combination of predrilled grouted rebar rods

Fully ballasted and partially ballasted solutions

Up to 10° (17.6%) for sites without snow, sub-

ject to site conditions and system design.

and helical screws is possible;


are available.

Ground anchors best suited for softer, sandy, or muddy soils where traditional rebar foundations are not suitable. They are even used in such areas (soils where there is a mixture of cobbles, sand) when conventional PEG rods, may have difficulty providing a secure hold with grouting. They are augured into the ground and provide robust anchoring for the solar installations.

Helical screws can be installed as shallow as 0.5 meters making it ideal for certain projects where shallow foundations are advantages i.e. landfills allowing some penetration, minimizing subsurface risk.

* Explanation of key figures on page 1:

Requirements

Upper soil layer

Site slopes

Land soil condition

MWp/ha:	Referring to the complete DC area, including the gaps between the DC blocks/tables	
kWp/working hour:	Time for complete DC installations including inverter stations	
MWp/container:	Only the substructure	
Machine costs:	All machines required for the DC installation	
Labor costs:	Labor for complete DC installations including inverter stations	
Logistic costs:	Including machinery and labor, to the site and onsite	
All figures assume suitable ground conditions, a min. 5MWp PEG® system with 550W modules and may differ regionally.		

US PEG[®] Datasheet US 2024_0320 Pictures: Jurchen Technology GmbH, All data may subject to alterations and errors.

Scan QR-code for

Jurchen Technology GmbH Prinz-Ludwig-Str. 5 97264 Helmstadt Germany

info@jurchen-technology.com www.jurchen-technology.com